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A theoretical study is made of the behaviour of clusters of spheres falling in a 
viscous fluid under the assumptions that: (a)  inertial effects are negligible, 
( b )  the distance between any two spheres is large compared with their radii. 
The equations of motion are derived and solved for a number of particular cases 
and the results compared with the experimental observations of the same motions 
reported in the preceding paper (Jayaweera, Mason & Slack 1964). For three 
or four spheres, initially in a horizontal line, the theory is in general agreement 
with the experiments. Three spheres forming an isosceles triangle are shown to 
oscillate about the horizontal and about the equilateral shape, so that this theory 
is unable to explain the observed tendency for three to six spheres to form a 
regular horizontal polygon. The stability of the steady configuration of n spheres 
at the vertices of a regular horizontal polygon is examined and it is found that 
the configuration is only stable for n < 7, which explains why this configuration 
is not observed for more than six spheres. 

1. The equations of motion for a cluster of falling spheres 
The preceding paper by Jayaweera, Mason & Slack (1964), hereafter referred 

to as JMS, reports some observations made of the relative motions of a cluster 
of spheres falling in a viscous fluid a t  low Reynolds numbers. The present paper 
contains a theoretical investigation of the small Reynolds number phenomena 
in an attempt to answer the question: How many of the results reported in 
JMS can be explained by use of the Stokes slow-motion equations il In addition 
to the neglect of the inertial terms in the Navier-Stokes equations, the further 
simplifying assumption is made that the distances between the spheres are large 
compared with their radii. The use of this restriction retains the most important 
terms in the mutual interaction of the spheres and enables the fluid motion to 
be found by the superposition of the motions produced by each sphere in the 
absence of the others. It rules out, however, any consideration of the motion 
when two or more spheres are nearly in contact. Since the Stokes equations are 
only valid for small Reynolds numbers and for the region near the spheres, the 
use of these assumptions will be justified if Re  1, a/s  < 1 and Re(s /a )  < 1, 
where Re is the Reynolds number (based on the diameter of the sphere, its speed of 
free fall in the viscous fluid and the kinematic viscosity ofthe fluid), a the radius 
of a sphere and s the distance between the spheres. Since the Reynolds number is 
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small and the spheres and fluid are of comparable density, the time taken for 
any sphere to adjust its velocity in response to changes in the fluid velocity 
can be neglected. This implies that the hydrodynamical forces on each sphere 
always balance its weight in the fluid. 

The familiar Stokes solution for a sphere of radius a moving with speed U 
in fluid at rest gives a fluid velocity 3aU/2r a t  a point distant r from the sphere 
in the line of motion and a velocity 3aU/4r at a point in the plane perpendicular 
to the line of motion, where terms O(a3/r3) have been neglected. It follows that, 
to this order of approximation, the forces on two spheres moving with velocities 
U ,  and U2 along their line of centres are 6nap( U, - 3aU2/2r) and 6nap( U2 - 3aU1/2r), 
and if the velocities are perpendicular to the line of centres the forces are 
6nap( U, - 3aU2/4r) and 677ap( U, - 3aU1/4r), in both cases in the opposite direction 
to the velocities. By combining these results, we see that the force on a sphere 
moving with velocity v, in the presence of another sphere moving with velocity 
v2 and with position vector r relative to the first sphere is 

3a(  )) 3a 
-677ap vl-- (v2.r)r-- vz----r . ( 2r3 4r 

It is convenient to use the radius a of each sphere as the unit of length and the 
terminal velocity 2ga2g/9p as the unit of velocity, where CT is the difference in 
density of the sphere and the fluid and p the fluid viscosity. If the positions and 
velocities of the spheres are denoted by ri, vi (i = 1 , 2 ,  . . . , n), the non-dimensional 
equations expressing the balance of the forces on each sphere are 

3 3 
vi- C -vi- C -(vi.rii)rii = z, 

j+i 4rii i+i 4r$i 

where z is a unit vector in the downward vertical, rii = ri - ri and terms O( l / r$)  
have been neglected. The solution of these equations, neglecting terms O( l / r$) ,  is 

n n 

vi = Z +  s - - z +  a x--(z.rij)rij. a 
i+i 4rii j+i 4r$ ( 3 )  

If n = 2, the velocities of both spheres are the same and there is no change in 
configuration. The spheres move in a direction lying between the direction of their 
line of centres and the downward vertical. The reason for the horizontal drift of 
the spheres is the greater resistance offered by the fluid to the spheres when they 
are moving abreast of each other than when they are in line. For n > 2, the velo- 
cities are not in general all equal, and the configuration will change. It is clear, 
however, that, if the spheres are a t  the vertices of a regular horizontal polygon, 
the configuration is steady and, at least for small values of n, this is the only 
possible steady configuration. 

The equations determining the paths of the spheres, and hence the change in 
configuration, are dri/dt = vi, with vi given by ( 3 )  or, changing the time-scale by 
a factor of +, 
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The relative motions of the spheres are unaffected by the term fz. An alteration 
of scale in the configuration of the spheres is equivalent to a change in the time- 
scale, since the remaining terms in (4) are homogeneous functions of the positions. 
Without any loss of generality, any convenient length in the initial configuration 
can be chosen as unit. 

With n = 3 the relative motion is given by the two vector equations 

1 z.r21 1 z.rgl 
5 3  = (- z + rZ1) - (- z + r31) . 

dt r21 r21 r31 r31 

A simple result follows immediately from these equations. If A is the vector area 
of the triangle formed by the three spheres, defined by 2 6  = r12 x r32, the rate 
of change of A is 

= z x -  (r12 -+-+-.  r:: ‘31) 
dt 2 r12 r31 

Hence z . d A l d t  = 0; i.e. the horizontal projection of the triangle is of constant 
area. No other simple result has been found, so that even for n = 3 it  is necessary 
to choose a configuration displaying some symmetry to reduce the complexity 
of the problem. Particular examples which form part of the experimental evi- 
dence will be discussed in the following sections. 

2. Three spheres falling in a vertical plane 
Three spheres initially placed in a horizontal line will always lie in the same 

vertical plane. If x is measured in the horizontal direction in the plane of motion 
and z vertically downwards, the co-ordinates of two of the spheres relative to 
the third may be written (xl, zl) and (x2 ,  z2)  and the equations ( 5 )  and (6) reduce to 

where 
The initial conditions are z1 = z2 = 0, x1 = 1, x2 = - c, so that the motion is 

given relative to  the initially central sphere and all cases are covered by 
1 6 c < co. The equations (7)  were solved numerically for a number of values of 
c and some of the results are shown in figure 1. The calculations show that one 
sphere, initially the one further from the centre, lags behind the others, moves 
towards the centre and falls between them, the process continuing, with another 
sphere lagging behind, for a certain number of times, until two of the spheres are 
relatively close together, when they fall together as a pair, leaving the third 
sphere behind. In  all the calculated cases, one of the spheres was eventually left 

r: = 2: + x;, r; = 2; + x;, rg = (zl - z2)2+ (xl - x ~ ) ~ .  

9-2 
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behind, but the particular one that was separated was very sensitive to varia- 
tions in c. 

These results are in general agreement with the observations described in 
JMS $ 4  (a). The calculations showed that the particular sphere that is left behind 
is the one initially further from the centre for c = 3 and 4, the one initially nearer 
the centre for c = 1.1,1.2 and 2 and the central sphere for c = 1.5. Thus the theory 
and the experiments agree except for the central range 1.2 < c < 2, which is the 
range where the behaviour is most sensitive to changes in c. 

FIGURE 1. 

k 

f 
Positions of three spheres, initially in a horizontal line, relative to the central 

sphere. (a) c = 3; (b)  c = 1.5; (c) c = 1-2. 

3. Four spheres falling in a vertical plane 
Four spheres initially placed symmetrically in a horizontal line will fall in a 

vertical plane and retain their symmetry. With the same axes as in the previous 
section, the co-ordinates of the spheres can be written ( x l ,  x ) ,  ( x 2 ,  0 ) ,  ( - x l ,  z ) ,  
( - x 2 ,  0 )  and the equations (4) give 

dx 1 1 

dt 22,  2x2’  
_ -  - 
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Writing x2 + x1 = 5, z2 - x1 = y, and absorbing a factor 2 into the time-scale, we 
have the simpler equations dx - _  - - YZ 

d t  (y2+22)$’ 

The initial conditions are z = 0, x = 1, y = c, 0 < c < 1. The initial distance 
between the two outer spheres is 1 + c and between the two inner spheres 1 - c. 

The possible nature of the solution of these equations can be discovered by the 
following arguments. If x = f y at any instant, z = 5 y for all time from (8) and 
(9). Hence x k y are of constant sign; i.e. they are both positive. Also, x and 
y are even functions and z is an odd function oft .  Suppose z = 0 at some time 
T > 0, at which time x = xl, y = yl. Then at time t = -T ,  z = 0, x = xl, y = y1 
and the solution is periodic with period 2T. In  this type of motion, the two pairs 
of spheres on either side of the central line oscillate in the horizontal direction 
as they fall, the members of each pair rotating round each other. If, however, 
z never vanishes for t > 0,  z > 0 and y is a monotonic decreasing function. If 
dz ld t  = 0 for any t then, for larger t ,  dz/dt  and d2z/dt2 are both negative and 
z must vanish. Hence, dzldt  never vanishes and so y > 0. Since y is a monotonic 
decreasing function y tends to a limit, a, say, where 0 < a < c and x tends to a 
limit p, where a 6 p < 1, and z tends to infinity. In this type of motion, the inner 
pair of spheresfall together, leaving the outer pair behind, the outer pairremaining 
further apart than the inner pair and so falling more slowly. The equations 
(8)-( 10) were solved numerically for a range of values of c. For 0 c c < 0.65, 
the periodic type of motion occurs, with a period increasing very rapidly as c 
increases from 0.5 to 0.65. It is not possible to prove by numerical integration 
that the periodic motion does not  occur for larger values of c. All that can be 
proved is that the period must be longer than the range oft for which the numerical 
solution is obtained. The solution for c = 0.7 showed that the period, if it exists, 
must be greater than 100, compared with a period of 10.75 for c = 0.65 and 5.1 
for c = 0-6. The results suggest, but do not conclusively prove, that, for 
0.7 < c < 1, the second type of motion occurs in which the two inner spheres 
separate from the two outer ones. It is not surprising that this type of motion 
should occur for values of c close to 1, since then the two inner spheres are very 
close together. It is in fact possible to prove that, for c sufficiently large, the 
separating type of motion must occur. The equations (8)-(10) can be written 

ax X + ( X - - Y )  d Y  - X . t ( X - Y )  
dZ ( Y + Z ) B  ’ dZ (X + Z)$ ’ 

- _ -  - 

where X = 9, Y = y2, Z = z2 and the initial value of Y is 1-6. X ,  Y and 
X - Y are all monotonically decreasing functions of 2. If sequences of functions 
X n ,  Yn are defined by the relations 

= - X i ( X n - Y n )  dYn+1 - X’(xn-Yn) 
dZ (Y,+Z)Q ’ dZ (X ,+Z))  ’ 

X n f l  = 1, Yn+l = 1 -€, at z = 0, 
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9, and Y, tend to the solutions X and Y of (1 1). If 1 2 X, > A,, 1 - E 2 Y, > B,, 
the relations (12) can be used to show that 1 2 Xnfl > A,+1, 1 - E 2 Y,+, > B,+l, 
where 

A,+1 = 1 - 2e/Bi, B,+l = 1 - 8 - 2 ~ / A i .  

The sequence B, can be shown to tend to a non-zero limit if e < 0.112. In  terms 
of the original variables, y is always positive and the separating type of motion 
occurs for c > 0.94. (This does not imply that the periodic motion necessarily 
occurs for c < 0-94.) 

The experimental evidence of JMS 0 4 (a)  supports the periodic motion. 
Because of the finite depth of the tank, the separating motion would not be dis- 
tinguishable from a periodic motion with long period. 

4. Three spheres forming a horizontal triangle 
The most important features of the motion of three spheres when they do not 

lie in a vertical plane can be illustrated by the particular case when they form an 
isosceles triangle with the unequal side horizontal. The symmetry of this con- 
figuration remains throughout the motion, which results in a considerable 
reduction in the complexity of the motion. If x and y are horizontal co-ordinates 
with the y-axis parallel to the base of the triangle, the positions of the two base 
spheres relative to the sphere at the apex of the triangle are r13 = (x, y, z ) ,  
rZ3 = (2, - y, z). The equations of motion (5) and (6) then reduce to the three 
equations 

It follows a t  once that xy is constant, which is an expression of the result 
previously obtained about the horizontal projection of the area of the triangle, 
and without loss of generality we may take xy = 1. Writing p for the cosine of the 
base angle of the triangle, we have 

Differentiating this result and using the value of dzldy obtained from (14) and 
(15), we can obtain the single separable equation 

d p  1-6p+4p3-  - + ____ - 0, dY 2Y 
which has the solution 

where A is a constant and the numerical terms are correct to two decimal places. 
Since, from (16), l/p2 2 1 + l/y4, only part of the range of values given by (18) 
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represents a possible shape for the triangle. The curves representing equation (IS) 
and the equation 

are sketched in figure 2 .  The triangle is determined completely by a point P 
on the curve, except for the sign of z, and there are two possible ranges, be- 
tween A and B and between C and D. At points where the two curves cross, 
z = 0 and the direction of motion along the curve is that of y increasing if z is 
positive, and the reverse direction if z is negative (see equation (14)). There are 

Y4 = P”(1 -P2) (19) 

0 0.1 7 0.5 1 -0 
P 

FIGURE 2. Sketch of equations (18) and (19). The parts of the curve (18) lying between A 
and B and between C and D determine possible shapes for the triangle formed by three 
spheres. 

two cases to be considered. If p < 0.17 at any time, the point P representing the 
configuration of the triangle always lies in the arc AB. If z is negative, P moves 
towards B, where z = 0, and then reverses its direction and moves towards A, 
but never reaches A, since, a t  A, z is infinite. In  terms of the triangle formed by 
the spheres, this means that, if the apex angle is less than about 20’ and the two 
base spheres are initially above the apex sphere, they fall past the apex sphere, 
the angle at the apex increasing to a maximum when the plane is horizontal and 
decreasing again as the two spheres move away from the apex. For such narrow- 
angled triangles, the coupling between the apex and the base is so weak that the 
base spheres and apex sphere fall almost independently, only influencing each 
other when the plane is nearly horizontal. The other case is when p > 0.17, 
when P moves backwards and forwards along the arc CD, the plane being hori- 
zontal when P is at  the two ends of its path, at which points the angles have their 
extreme values. Starting from C, the cycle of motion is that the base spheres fall 
below the apex to a maximum distance and return to the horizontal position, the 
apex angle steadily increasing, and then the apex sphere falls below the base and 
returns to the horizontal, the apex angle steadily decreasing, until the original 
position C is regained. It is easy to show, by a consideration of the slopes of the 
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two curves with equations (18) and (19); that the points C and D lie on either side 
of the point where p = Q, so that the motion of the triangle can be described as 
an oscillation about the horizontal and about the equilateral shape. The coupling 
between the spheres is now strong enough to ensure that one cannot be separated 
from the others. 

The observations made of this type of motion are described in JMS $ 5  (w). 
The variations in shape preserve the horizontal area and the oscillations agree 
with the theory. The spiral motion of the apex sphere, instead of the predicted 
plane motion, is probably a consequence of the base line not being exactly hori- 
zontal, resulting in a further oscillation about a horizontal axis. The present 
theory, however, does not explain the decay of the oscillations. The observations 
suggest the presence of a small damping force, which would eventually destroy 
the oscillations and leave the spheres in their steady configuration, i.e. a horizontal 
equilateral triangle. Since the present theory is unable to explain the attaining 
of the steady configuration in a simple case of three spheres, it  is presumably 
unable to do so for three spheres initially placed arbitrarily or for higher numbers 
of spheres. On the basis of the theory for the isosceles triangle, it may be con- 
jectured that, in the general case, the spheres will oscillate about the steady con- 
figuration, provided they are sufficiently evenly distributed to ensure that one 
or more spheres do not get left behind by the remainder. The damping factor 
which is required to explain the achievement of the steady configuration is 
presumably an inertial effect and so is outside the scope of the present investiga- 
tion. 

5. The stability of the steady configuration 
Although the observed attainment of the steady configuration for 3, 4, 5 and 

6 spheres cannot be explained by this theory, there remains the question of the 
different behaviour of more than 6 spheres, which do not form a regular polygon. 
Since 7 spheres placed at the vertices of a regular heptagon do not remain in this 
steady configuration, it seems likely that the reason for the change in behaviour 
is connected with the stability of the regular pattern to small disturbances which 
alter the relative positions of the spheres. 

If x and y are two perpendicular horizontal unit vectors and an origin is 
taken a t  the centre of the polygon, the position vectors of the centres of the n 
spheres are 

ri = xcos(2ni/n)+ysin(2ni/n) (i = 1,2,  ..., n).  

A small disturbance will alter the positions of the spheres to 

ri = x cos (2nijn) + y sin (2ni/n) + xi x + giy + zi z, 

where xi, yi, zi are small, and it is the behaviour of these 3% quantities that will 
determine the stability or instability of the configuration. The vector rij = ri - ri 
is 

rXi = - 2 sin (n(i +j)/n} sin {n(i -j)/n} x + 2cos{n(i +j)/n} sin {n(i -j)/n} y 

+ (Xi - Xi) x + (yi - yj) y + (Zi - X i )  2, 
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and the magnitude of this vector, which is required in the equations of motion, is 

neglecting terms of the second order in xi, yi, xi. To the same order the equations 
of motion (4) become, on separating the vertical and horizontal components, 

m ( i  +j) ((xi -xj)sin ~ - 
1 -i- . _ _ _ ~ ~ . ~  

dzi 
dt - j$i4sin(m(i-j)/n} lsin{m(i-j)/n}] n 
_ -  

The range of values for i is 1 to n and the summations are over the same range 
ofvalues forj, excludingj = i. Differentiating the first set of equations, the second 
derivatives of the zi can be expressed in terms of the first derivatives of the xi 
and the y6, which in turn can be expressed in terms of the z6 by the second set of 
equations. Performing this elimination, we obtain 

Because of the symmetry of the undisturbed configuration, it is clear that, if the 
form of the equation (21) for one value of i is known, the rest of the equations can 
be written down by cyclic interchange of the terms. With i = n, and some manipu- 
lation of the equation, the equation for z, becomes 

Writing this equation in the form 

4(d%,/dt2) = u,z,+u,z~ +a,z2+ +an-,zn-l, (23) 

we can at once write down the remaining equations, namely 
4(d2zl/dt2) = anzl + alzz + . . . + u,-~z,, 
4(d2Z2/dt2) = U , Z 2 + a 1 Z 3 +  ... +U,-lZ1, 

and so on. These equations have solutions of the form 

zi = Z,exp ( rl: &I+,) (i = 1,2 ,  ..., n), 
if h is a latent root of the matrix 

This type of matrix is called a circulant matrix and the latent roots are known 
to be h = a, + WU, + W2U2 + . . . + Wn-lan_,, 
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where w is an nth root of unity. Substituting the values of a,, a2, ..., an, from (22) 
and (23) we have 

and, writing w = exp (27~ir/n), the latent roots are 

n-1 j - 1  - cos { ~ ( j  - k)/n) sin2{rr(j - k)/n} 
( r  = 1,2,  ..., n). (24) A,= i=2 c k=l c sin2(nj/n) sin2 (nk/n) 

All the latent roots are real and A, = A,-,, which are consequences of the sym- 
metry of A, which in turn depends on the symmetry of the polygon about the 
x-axis. 

Then equations (22 )  have 2n independent solutions, 2n - 2 of which are supplied 
by f A,, . . . , k An-, and the remaining two solutions by A,, which is zero. These 
last two solutions are essentially neutral solutions, one corresponding to a vertical 
displacement of the whole polygon and the other to an expansion or contraction 
of the polygon without change of shape, which results in a small increase or 
decrease in the rate of fall of the polygon. The latent roots A,, . . . , An-l are equal 
in pairs (A, = AnJ except for r = i n  when n is even, but an examination of 
the rank of the matrix (A - AI) shows that there are n independent latent vectors 
so no solutions of the form t exp ( ihb)  need be included. 

The polygon will be a stable configuration if all the latent roots are negative, 
but if one is positive the configuration is unstable. Evaluation of the roots shows 
that, for n = 3, 4, 5 and 6, the configurations are stable, but for 7 < n < 12 
there is at least one positive root. The number of positive roots increases as n 
increases-there are 6 when n = 12-and they also increase in magnitude. These 
facts suggest that there are always positive roots for n > 6, but it has not been 
possible to prove this. Certainly it seems physically unlikely that the unstable 
configuration can change back into a stable one as the number of spheres increases, 
particularly if, as seems possible, the change from stability to instability is 
associated with the increasing ratio of the maximum and minimum distances 
between the spheres as n increases. 

6. Unexplained behaviour 
The previous sections have explained some of the observations described in 

JMS. In  addition to the observations made for Re > 1 and for spheres nearly in 
contact, which have been excluded from the discussion, there remain some 
phenomena which occur for small Reynolds number but which are not explicable 
by Stokes slow-motion theory. The most striking of these is the attaining of a 
steady configuration by 3-6 spheres, which was mentioned in $5.  Another ex- 
ample is the horizontal separation of the spheres as they fall, which has been 
observed in nearly all the motions described. Since this separation is very slow, 
there is no difficulty in regarding i t  as a small inertial effect. The motion of three 
and four spheres in a vertical plane is in agreement with the theory for Re < 0-16 
but, for larger Re, the spheres leave the vertical plane. This is presumably because 
the motion in the vertical plane has become unstable and this also must be an 
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inertial effect. There are also the anomalous motions for very low Reynolds 
numbers, which tend to maintain the initial configuration. This may be an 
indication that the fluid used is slightly non-Newtonian in the sense that it is 
able to support a very small stress, which would prevent the small relative motions 
of the spheres but allow the cluster to fall as a whole. 

The rotation of the spheres has so far been neglected. It is produced by asym- 
metry of the flow on two hemispheres and is O(a4/s4) so it is very small for sepa- 
rated spheres and its neglect is consistent with the approximations made in the 
theory. Its presence in the two-sphere problem and in the motion of the regular 
polygon of spheres is in accordance with Stokes slow-motion theory. 

The numerical calculations were made at  the University of London Computer 
Unit and the assistance given by the staff of the Unit is gratefully acknowledged. 
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